United States Patent

US009292312B2

(12) 10) Patent No.: US 9,292,312 B2
Bealkowski et al. 45) Date of Patent: Mar. 22, 2016
(54) SIMULATED NETWORK BOOT 7,664,836 B2 2/2010 Kim
ENVIRONMENT FOR BOOTSTRAP 7,747,847 B2 6/2010 El Zur et al.
7,979,260 Bl 7/2011 Sobel et al.
REDIRECTION 8,055,893 B2 11/2011 Locker et al.
8,104,083 Bl 1/2012 Sobel et al.
(75) Inventors: Richard Bealkowski, Redmond, WA 2005/0132360 Al 6/2005 C(})lueeteal?,l
(US); Michael R. Turner, Monroe, WA 2006/0129788 Al* 6/2006 Maedaetal.ccco..... 713/1
(Us) 2008/0133794 Al 6/2008 Rothman et al.
2008/0155245 Al* 6/2008 Lipscombeetal. ... 713/2
(73) Assignee: Lenovo Enterprise Solutions 2009/0013061 Al* 1/2009 Winteretal. 709/222
: " X 2010/0037041 Al 2/2010 Joshi et al.
(Singapore) Pte. Ltd., Singapore (SG) 2010/0262815 Al* 10/2010 Bozek etal. 713/1
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Chadha, Vineet et al., “Provisioning of Virtual Environments for
U.S.C. 154(b) by 1002 days. Wide Area Desktop Grids through Redirect-on-write Distributed File
System”, 2008 IEEE International Parallel & Distributed Processing
(21) Appl. No.: 13/426,654 Symposium, Apr. 14-18, 2008, 8 pages.
Vallee, Geoffroy et al., “OSCAR Testing with Xen”, Proceedings of
(22) Filed: Mar. 22, 2012 _the 20th International Symposium on High-Performance Computing
in an Advanced Collaborative Environment (HPCS’06), May 14-17,
(65) Prior Publication Data 2006, pp. 1-6.
US 2013/0254521 A1 Sep. 26, 2013 * cited by examiner
Primary Examiner — Brian P Whipple
(51) IGn0tt'$gl}5/1 77 (2006.01) (74) Attorney, Agent, or Firm — Katherine S. Brown, Jeffrey
: L. Strees
GO6F 9/445 (2006.01)
Ho4L 29/08 (2006.01) (57 ABSTRACT
GO6F 9/44 (2006.01) Mechanisms are provided, in a bare metal computing device,
(52) US.CL for executing a network based boot operation for booting the
CPC oo, GOGF 9/445 (2013.01); GOGF 9/4416 ~ bare metal computing device. In response to powering-on the
(2013.01); HO4L 29/08 (2013.01); HO4L bare metal computing device, firmware is executed that
’ 67/141 (2613 o1) executes a stub from a virtual media image accessible by the
58) Field of Classification S h ’ bare metal computing device. The configuration information
(58) Field of Classification Searc of the bare metal computing device indicates that the bare
None L . metal computing device is being booted from a local media.
See application file for complete search history. The stub configures the firmware environment and a network
. boot program to utilize a network connection by modifying
(56) References Cited the configuration information of the bare metal computing

U.S. PATENT DOCUMENTS

6,463,530 Bl 10/2002 Sposato
6,684,327 Bl 1/2004 Anand et al.
6,810,478 Bl 10/2004 Anand et al.
7,386,711 Bl 6/2008 Haimovsky et al.
7.418,588 B2 8/2008 Lin et al.

BARE-METAL COMPUTING DEVICE
0

PROCESSOR FIRMWARE
a0 05

MEMORY 208
VIRTUAL MEDIA IMAGE
0

BOOT FILES g~
|]

NeP a-
Fv} i

device to indicate that the bare metal computing device is
being booted from a network device. A control program is
obtained from a remotely located boot server using the net-
work boot program and is executed to complete the booting of
the bare metal computing device.

25 Claims, 3 Drawing Sheets

MANAGEMENT SERVER
0

MANAGEMENT|
APPLICATION
R

BOOT SERVER
(TFTP, FIP, HTTP,..)
20

=3

L1 =
BOOT FRES
|

NBF(s)

\
\
\

B

U.S. Patent Mar. 22, 2016 Sheet 1 of 3 US 9,292,312 B2

1190

104

i =

SERVER

NETWORK

SERVER 4> 14
108 STORAGE
FIG 1
206—~_| PROCESSING 200
UNIT(S)
210 202 208 218 236
o ; ;
GRAPHICS o MAIN ALDIO
PROCESSOR ["BMCH == yemory ADAPTER S0
204
240 Nl 238
- BUS
N eus SBACH ’
USB AND KEYBOARD
i R R s
isk || co-rom i%gﬁ_‘f%f OTHER ;g{;’@%‘; AND MOUSE | | mopem | | rom
: PORTS ' ADAPTER
226 230 242 232 234 220 222 224

FIG. 2

U.S. Patent Mar. 22, 2016 Sheet 2 of 3 US 9,292,312 B2

MANAGEMENT SERVER
330
/ |MANAGEMENT
/ APPLICATION
BARE-METAL COMPUTING DEVICE / 832
300
PROCESSOR | | FIRMWARE
302 305
MEMORY 308
VIRTUAL MEDIA IMAGE BOOT SERVER
310 (TFTP, FTP, HTTP,...
320
STUB
312
CONFIG. FILE g e
- 322
314
NBP e BOOT FILES
36« -7l 3
ot NBP(s)
MCP A’/ /’/ ﬁ
32
BOOT FILES o~~~
324
NBP(s) |a--"
3% FIG. 3

U.S. Patent

Mar. 22, 2016 Sheet 3 of 3
START
_______________ :
DETERMINE BOOT | !
SERVER AND i
PORT(S)VIAOOB | | STUB LOCATES
QUERIES : NETWORK
402 . CONTROLLER
i : CORRESPONDING
! TO CONFIG. DATA
SAVE ORIG. BOOT | | 414
LIST AND SETBOOT | | i
LISTTOVIRTUAL | !
MEDIA IMAGE | STUB SAVES
404 ! CONTROLLER DATA
! AS SIMULATED
v . NETWORK BOOT
! DATA
CREATEVIRTUAL | 1
MEDIAIMAGEAND | | 416
POPULATE WITH ! v
STUB ASET?NF'G' | STUB CREATES NBP
406 ! CONFIG. DATA
=2 l 418
! 418
v i 7
POPULATE BOOT | STUB LOADS N8P
SERVERWITHNBP | ! INTO MEMORY
A8 ! 420
S P I ¥
v STUB REPLACES THE
POWER ON AND NBP LOADED IMAGE
BOOT FROM VIRTUAL CONFIG. DATA WITH
MEDIA IMAGE SIMULATED
40 NETWORK BOOT
DATA
¥ 2
STUB READS TS i
CONFIG. DATA FROM
VIRTUAL MEDIA STUB INVOKES THE
IMAGE NBP
412 424

US 9,292,312 B2

FIG. 4

NBP READS ITS
CONFIG. DATA AND
PROCEEDS WITH

y

BOOTSTRAP
OPERATION
426

v

OPTIONALLY, CHAIN
LOAD OTHER NBP(S)
428

v

LOAD MCP KERNEL
INTO L.LOCAL
MEMORY
430

v

MCP INITIALIZES AND
LOADS ANY OTHER
BOOT FILES FROM
BOOT SERVER
432

v

MCP COMPLETES
INITIALIZATION AND
SIGNALS READY
434

v

UNMOUNT VIRTUAL
MEDIA IMAGE AND
RESTORE ORIG.
BOOT LIST
436

US 9,292,312 B2

1
SIMULATED NETWORK BOOT
ENVIRONMENT FOR BOOTSTRAP
REDIRECTION

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for providing a simulated network boot envi-
ronment for enabling a bootstrap redirection operation.

Computing devices typically, as part of a booting opera-
tion, load basic input/output system (BIOS) code for config-
uring the computing device to load an operating system, and
subsequent application code for execution on the computing
device. When the computing device first starts up, the first job
for the BIOS software is the power-on self-test, which initial-
izes and identifies system devices such as the CPU, RAM,
video display card, keyboard and mouse, hard disk drive,
optical disc drive, and other hardware. The BIOS then locates
boot loader software held on a peripheral device (designated
as a ‘boot device’), such as a hard disk or a CD/DVD, and
loads and executes that software, giving it control of the
computing device. This process is known as booting, or boot-
ing up, which is short for bootstrapping.

BIOS software is generally stored on a non-volatile
memory chip, such as a read only memory (ROM) chip or the
like, on the motherboard of the computing device. It is spe-
cifically designed to work with each particular model of com-
puter, interfacing with various devices that make up the
complementary chipset of the system.

A BIOS has a user interface (UI), typically a menu system
accessed by pressing a certain key on the keyboard when the
computing device powers on. In the BIOS UL a user can
configure hardware, set the system clock, enable or disable
system components, select which devices are eligible to be a
potential boot device, set various password prompts, and the
like. The BIOS provides a small library of basic input/output
functions used to operate and control the peripherals such as
the keyboard, text display functions and so forth, and these
software library functions are callable by external software.

The role of the BIOS has changed over time. In modern
computing devices, the BIOS is being replaced by the more
complex Unified Extensible Firmware Interface (UEFI).
UEFI is a specification that defines a software interface
between an operating system and platform firmware. UEF1 is
amore secure replacement for the older BIOS firmware inter-
face which is vulnerable to bootkit malware. UEFI can be
used in business computers to allow remote diagnostics and
repair of computers, even if the operating system will not
load.

SUMMARY

In one illustrative embodiment, a method, in a bare metal
computing device, for executing a network based boot opera-
tion for booting the bare metal computing device is provided.
The method comprises, in response to powering-on the bare
metal computing device, executing firmware that executes a
stub from a virtual media image dynamically mounted and
made available to the bare metal computing device. The con-
figuration information of the bare metal computing device
indicates that the bare metal computing device is being
booted from a local media, or equivalent. The method further
comprises configuring, by the stub, a network boot program
on the bare metal computing device to utilize a network
connection by modifying the configuration information of the
bare metal computing device to indicate that the bare metal

10

15

20

25

30

35

40

45

50

55

60

2

computing device is being booted from a network device. The
method also comprises obtaining a mini control program
from a remotely located boot server using the network boot
program on the bare metal computing device. Moreover, the
method comprises executing the mini control program on the
bare metal computing device to complete the booting of the
bare metal computing device.

In other illustrative embodiments, a computer program
product comprising a computer usable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
is provided. The system/apparatus may comprise one or more
processors and a memory coupled to the one or more proces-
sors. The memory may comprise instructions which, when
executed by the one or more processors, cause the one or more
processors to perform various ones of, and combinations of,
the operations outlined above with regard to the method illus-
trative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1is an example diagram of a distributed data process-
ing system in which aspects of the illustrative embodiments
may be implemented;

FIG. 2 is an example diagram of a computing device in
which aspects of the illustrative embodiments may be imple-
mented;

FIG. 3 is a block diagram illustrating the primary opera-
tional elements of a system for remote booting of a bare metal
computing device in accordance with one illustrative embodi-
ment; and

FIG. 4 is a flowchart outlining an example operation for
booting a bare metal computing device from a network boot
server in accordance with one illustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide mechanisms for pro-
viding a simulated network boot environment for enabling a
bootstrap redirection operation. More specifically, the illus-
trative embodiments provide mechanisms for configuring
bare metal servers by providing a simulated network boot
environment for performing bootstrap redirection operations
that permit such bare metal servers to be booted from
remotely located mini control programs (MCPs), e.g., a
Linux kernel or the like, which in turn may be used to
remotely load an entire operating system and/or other boot-
strap software. In one specific implementation, the mecha-
nisms of the present invention provide a UEFI bootstrap
redirection mechanism that boots from a local media, or

US 9,292,312 B2

3

equivalent, yet creates a simulated network boot environment
thereby allowing downstream network boot program(s) to
operate properly.

The term “bare metal” in the present context refers to a
computing device that does not have a locally resident mini
control program (MCP), operating system or hypervisor for
booting from a local storage device, or if one is present
locally, it is not available for in-band management operations
during a bootstrap (i.e., booting or bootup) operation. The
term “in-band” refers to actions that are performed while
running in a suitable environment on the main processor(s) of
the computing device. The term “out-of-band” refers to
actions being performed by a co-processor, service processor,
or other “helper” processor.

Because a bare metal computing device does not have its
own locally resident mini control programs (MCPs) or oper-
ating system, it must obtain the necessary software to config-
ure the computing device from an external device, e.g., a
floppy disk, CD-ROM, DVD, tape storage, or the like, or
obtain the software from a remote location over a communi-
cation connection, e.g., a server over a network connection.
However, in order to obtain the software over a network
connection, the bare metal computing device must be able to
generate an in-band environment that permits a network con-
nection to be made possible. However, known mechanisms
for booting from remotely located network devices, i.e. net-
work boot program (NBPs), such as iPXE, Extensible Firm-
ware Interface (EFI) Linux Loader (“elilo”), or the like,
require that the software used to implement the in-band envi-
ronment be itself loaded over the network in order for that
software to know the identity of the network ports on the bare
metal computing device to utilize as well as the location of the
source of the remotely located boot software. This represents
a “catch-22” situation when it comes to bare metal computing
devices that do not have an operating system that informs the
NBPs of the network ports that can be used to access remote
boot software, e.g., in order for elilo to be able to access a
remote server to download boot software, elilo must know the
network port to use and will only know that network port if
elilo used that network port when it was itself downloaded for
execution on the computing device.

In addition, known network boot programs (NBPs) thatuse
known mechanisms, such as Preboot eXecution Environment
(PXE), for example, require a Dynamic Host Configuration
Protocol (DHCP) server, various DHCP options to be set, and
a Trivial File Transfer Protocol (TFTP) server in order to be
able to facilitate remote network booting of a computing
device. Such mechanisms require dynamic Internet Protocol
(IP) address support which eliminates the ability for static IP
address computing devices to utilize these mechanisms.

In view of the above, one of the primary issues addressed
by the illustrative embodiments is how to load a mini control
program (MCP), such as an operating system kernel or the
like, reliably and quickly over one or more of the network
ports of a bare metal computing device. The illustrative
embodiments provide mechanisms for simulating a network
boot environment that makes the NBP believe, based on its
configuration information, that the NBP was loaded from a
remotely located computing device over a network connec-
tion.

In one illustrative embodiment, the bare metal computing
device is configured to have a stub, a corresponding minimum
footprint configuration file for configuring the stub, and a
firmware boot code, such as basic input/output system
(BIOS) or Unified Extensible Firmware Interface (UEFI), for
example. The stub is a very small portion of code that stands
in for some programming functionality. When the bare metal

10

15

20

25

30

35

40

45

50

55

60

65

4

computing device is powered on, the UEFI code is executed
from the firmware of the bare metal computing device. The
UEFI code is configured to load the stub into memory along
with the minimum footprint configuration file which config-
ures the stub with a network port over which to communicate
as well as other network configuration information that con-
figures the stub to utilize a network interface and access
remotely located bootstrap programs for booting the bare
metal computing device. The stub and configuration file may
be part of a local media image, e.g., floppy disk image, a
virtual floppy disk image, hard disk image, or the like, in
memory or other storage of the bare metal computing device.

The local media image or equivalent may further store a
first NBP that the bare metal computing device can use to
access remotely located bootstrap software via a network
communication connection. Alternatively, the first NBP may
be remotely obtained from a remotely located server via a
network connection configured by the stub using its configu-
ration file. The first NBP may be, for example, in one illus-
trative embodiment, the iPXE application. The first NBP may
be configured by the stub to specify a network port to be used
for network communication, a type of addressing mode to be
used, e.g., dynamic or static addresses, netmask information,
optional gateway address information, and/or the like. The
first NBP may further be configured with an identification of
one or more second and subsequent NBPs and their network
location of these one or more second and subsequent NBPs.
These second and subsequent NBPs may be loaded from the
remote server into local memory and executed to facilitate the
downloading and execution of additional boot software from
the remote boot server.

Essentially, the stub permits a network boot environment to
be created on the bare metal computing device to make it
appear as though the bare metal computing device has started
a network based boot process such as those conforming with
the PXE process when in fact the boot process initiated using
a local virtual media image. The stub replaces the configura-
tion of the bare metal computing device, which indicates a
locally initiated boot process, to cause the bare metal com-
puting device to indicate that it was booted from a network
boot server when in fact it was booted from a local virtual
media image. Thereafter, a network boot program may be
used to access a remotely located mini control program and
other bootstrap software using the network aware configura-
tion of the bare metal computing device. As a result, a network
based bootstrap operation may be performed for booting a
bare metal computing device.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of

US 9,292,312 B2

5

the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain or store
a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

20

40

45

55

6

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

Thus, the illustrative embodiments may be utilized in many
different types of data processing environments. Essentially,
any computer system that uses bare metal booting of a control
program, such as a hypervisor, operating system, or the like,
may make use of the mechanisms of the illustrative embodi-
ments described herein. The bare metal booting (or bootstrap)
operation in accordance with the illustrative embodiments is
performed using a local virtual media image that simulates a
network boot environment which in turn permits the bare
metal computing system/device to complete its bootstrap
operation using remotely located mini control programs and
other bootstrap applications on a boot server or other
remotely located computing device. The term “remote” or
“remotely located” as it is used herein refers to a computing
device that is accessible only through one or more data net-
works and not by direct local connection.

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented. Distributed
data processing system 100 may include a network of com-
puters in which aspects of the illustrative embodiments may
be implemented. The distributed data processing system 100
contains at least one network 102, which is the medium used
to provide communication links between various devices and
computers connected together within distributed data pro-
cessing system 100. The network 102 may include connec-
tions, such as wire, wireless communication links, or fiber
optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102 along with storage unit 108. In
addition, clients 110, 112, and 114 are also connected to
network 102. These clients 110, 112, and 114 may be, for
example, personal computers, network computers, or the like.
In the depicted example, server 104 provides data, such as
boot files, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example and may be bare
metal computing devices in accordance with the illustrative

US 9,292,312 B2

7

embodiments. As such, the clients 110, 112, and 114 may
initiate a bootstrap operation locally using a local virtual
media image and complete the bootstrap operation using a
mini control program and other bootstrap applications
obtained from one or more of the servers 104, 106 via the
network 102. One or more of the servers 104, 106 or clients
110, 112, 114 may further provide a management application
for managing the bootstrap operation being performed on one
or more bare metal computing devices, such as one or more of
the clients 110, 112, and 114. Distributed data processing
system 100 may include additional servers, clients, and other
devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data com-
munication lines between major nodes or host computers,
consisting of thousands of commercial, governmental, edu-
cational and other computer systems that route data and mes-
sages. Of course, the distributed data processing system 100
may also be implemented to include a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), a wide area network (WAN), or the like.
As stated above, FIG. 1 is intended as an example, not as an
architectural limitation for different embodiments of the
present invention, and therefore, the particular elements
shown in FIG. 1 should not be considered limiting with regard
to the environments in which the illustrative embodiments of
the present invention may be implemented.

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented. In one aspect of the illustrative embodi-
ments, data processing system 200 is an example of a bare
metal computing system/device, such as client 110 in FIG. 1,
in which computer usable code or instructions, implementing
the processes described hereafter with regard to a bare metal
computing system/device operations, may be executed. In
another aspect of the illustrative embodiments, the data pro-
cessing system 200 may further be a server computing device,
such as server 104 or 106 in FIG. 1, which provides a man-
agement application for controlling the network based boot-
strap operation of a bare metal computing system/device. Still
further, the data processing system may be a server comput-
ing device, such as server 104 or 106 in FIG. 1, which pro-
vides a mini control program and other bootstrap applications
to a bare metal computing system/device via a network or the
like.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

In the depicted example, local area network (LAN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards, and PC cards for

25

40

45

8

notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash basic
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI10) device 236 may be connected to SB/ICH 204.

In the case of a server computing system, such as server
104 or 106 in FIG. 1, an operating system may run on pro-
cessing unit 206. The operating system coordinates and pro-
vides control of various components within the data process-
ing system 200 in FIG. 2. As a client, the operating system
may be a commercially available operating system such as
Microsoft® Windows 7®. An object-oriented programming
system, such as the Java™ programming system, may run in
conjunction with the operating system and provides calls to
the operating system from Java™ programs or applications
executing on data processing system 200.

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System p® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system. Data process-
ing system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and receive data. A memory
may be, for example, main memory 208, ROM 224, or acache
such as found in NB/MCH 202 in FIG. 2.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1 and 2 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to or
in place of the hardware depicted in FIGS. 1 and 2. Also, the
processes of the illustrative embodiments may be applied to a
multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device that
is configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data, for example. Essentially, data processing system

US 9,292,312 B2

9

200 may be any known or later developed data processing
system without architectural limitation.

With reference again to FIG. 1, one or more of the clients
110, 112, and 114 may be a bare metal computing device that
does not necessarily have its own local hypervisor, operating
system, or the like. Using the mechanisms of the illustrative
embodiments, the clients 110, 112, and 114 may have a local
virtual media image from which a stub is executed using its
locally stored configuration information and a network boot
program (NBP) to establish a network boot environment.
Using this network boot environment, the stub causes com-
munication with a remote server, such as server 104 or 106, to
obtain a mini control program (MCP) that is able to be used to
continue the bootstrap operation using remotely located boot-
strap applications on the remotely located server 104 or 106.
One of the servers 104 or 106 may provide a management
application that controls or orchestrates the network boot-
strap process for one or more bare metal computing devices in
accordance with the illustrative embodiments.

It should be appreciated that while the illustrative embodi-
ments are described above with regard to network bootstrap-
ping a bare metal computing device that is a client computing
device, the illustrative embodiments are not limited to such.
Rather, the mechanisms of the illustrative embodiments may
be used to network bootstrap any bare metal computing
device. For example, in one illustrative embodiment, the bare
metal computing device may be a blade server system having
aplurality of blade servers. Each blade server may correspond
to a different bare metal computing device or the blade server
system as a whole may be treated as the bare metal computing
device for purposes of the operation of the illustrative
embodiments. Any bare metal computing device may be
booted and configured using the mechanisms of the illustra-
tive embodiments.

To better illustrate the mechanisms and their operation in
accordance with the illustrative embodiments, FIG. 3 is pro-
vided hereafter which illustrates the primary operational ele-
ments for performing a network bootstrap operation of a bare
metal computing device in accordance with the illustrative
embodiments. As shown in FIG. 3, the bare metal computing
device comprises firmware 305 and a virtual media image 310
accessible via local, remotely mounted, or attached storage,
and which may be loaded into memory 308 of the bare metal
computing device 300. The bare metal computing device 300,
after being configured with a simulated network environment
in accordance with the illustrative embodiments, communi-
cates with a remotely located boot server 320, or file server,
that holds control program files used for a bootstrap opera-
tion, via one or more networks 340 to obtain a mini control
program 322, boot files 324, and one or more network boot
programs (NBPs) 326 from the boot server 320. A manage-
ment server 330 may be provided that provides a management
application or utility 332 that orchestrates the network boot-
ing of the bare metal computing device 300.

Initially, the bare metal computing device 300 has no soft-
ware mechanisms, other than firmware 305 which provides a
basic set of input/output software for facilitating communi-
cation with the hardware of the bare metal computing device
300, resident in the bare metal computing device 300 and
must be configured with software to be executed upon power-
up of the bare metal computing device 300. This is the pur-
pose of the management application 332. It should be appre-
ciated that while the depicted example illustrates the
management application 332 being resident on a separate
server computing device, i.e. the management server 330, the
management application 332 may be provided on a different
computing device. For example, in one illustrative embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment, the management application 332 may be executed by a
service processor (not shown) that is associated with the bare
metal computing device 300. For example, in a blade server
system, the bare metal computing device 300 may be one of
the blades in the blade server system while the service pro-
cessor may be a separate processor within the blade server
system that operates to manage and configure the blades in the
blade server system.

The management application 332 may be executed initially
for the purpose of performing out-of-band (OOB) queries to
determine the presence of one or more bare metal computing
devices 300 as well as the network port(s) to be used on the
bare metal computing device 300 to perform communications
via the network 340. Management application 332 may select
the bare metal computing devices 300 and associated network
connectivity 340 via interaction with a system administrator
via a program user interface (UI) or by rules or other selection
criteria stored in association with management application
332, for example. The stored rules or criteria can be defaults
or specific selections determined by a system administrator
operating management application 332, for example. The
management application 332 further configures the bare
metal computing device’s firmware 305 with a boot list indi-
cating the device, or series of devices, from which to initially
boot the bare metal computing device 300. In accordance
with the mechanisms of the illustrative embodiments, the
management application 332 configures the boot list in the
firmware 305 of the bare metal computing device 300 to
identify a local virtual media image 310 as the initial boot
device for the bare metal computing device 300.

The firmware 305 stores an initial code that is executed
when the bare metal computing device 300 is powered on,
e.g., a basic input/output system (BIOS), Unified Extensible
Firmware Interface (UEFI), or the like. In one illustrative
embodiment, the firmware 305 is UEFI stored on a flash
memory built-in to the bare metal computing device. The
management application 332 configures the UEF] of the firm-
ware 305 to boot from the local virtual media image 310 and
thus, when the bare metal computing device 300 is powered
on and begins its bootstrap operation, the bare metal comput-
ing device 300 is configured to know that it is being booted
locally. As a result, without modification by the mechanisms
of the illustrative embodiments, the bare metal computing
device 300 would not be configured to complete its bootstrap
operation via a network based boot server.

The management application 332 further creates a virtual
media image 310 on the bare metal computing device 300
from which the bare metal computing device 300 can begin its
bootstrap operations. The virtual media image 310 comprises
a stub 312, a configuration file 314, and a first network boot
program (NBP) 316. The virtual media image 310 is a repre-
sentation of a local media, such as a floppy diskette, CD-
ROM, DVD-ROM, or the like. The virtual media image 310
simulates a local media from which the bare metal computing
device may be booted.

The stub 312 is a very small portion of code that stands in
for some programming functionality. When the bare metal
computing device is powered on, the UEFI code in the firm-
ware 305 is executed. The UEFI code has been configured by
the management application 332 to load the stub 312 into
memory 308 along with the minimum footprint configuration
file 314 which configures the stub 312 with a network port of
a local network interface card (NIC) or the like over which to
communicate with the network 340, as well as other network
configuration information, such as an address for the bare
metal computing device to be used (for static IP addresses) or
to use a dynamic address mechanism (e.g., DLICP or the

US 9,292,312 B2

11

like), an address of the boot server 320, and/or the like. Thus,
through the configuring of the stub 312 to operate in a net-
work environment defined by the network port and address
information, the bare metal computing device 300 is able to
access the network 340.

As shown in FIG. 3, the local virtual media image 310 may
further store a first NBP 316 that the bare metal computing
device can use to access remotely located bootstrap software
on the boot server 320 via the network communication con-
nection to the network 340. Alternatively, the first NBP 316
may be remotely obtained from a remotely located server 320
via a network connection configured by the stub 312 using its
configuration file 314. The first NBP 316 may be, for
example, in one illustrative embodiment, the iPXE applica-
tion. The first NBP 316 may be configured by the stub 312 to
specify a network port to be used for network communica-
tion, a type of addressing mode to be used, e.g., dynamic or
static addresses, netmask information, optional gateway
address information, and/or the like. The first NBP 316 may
further be configured with an identification of one or more
second and subsequent NBPs 326 and their network location
of these one or more second and subsequent NBPs 326, e.g.,
on boot server 320. These second and subsequent NBPs 326
may be loaded from the remote server into local memory 308
and executed to facilitate the downloading and execution of
additional boot software 324 from the remote boot server 320.

Essentially, the stub 312 permits a network boot environ-
ment to be created on the bare metal computing device 300 to
make it appear as though the bare metal computing device
300 has started a network based boot process when in fact the
boot process initiated using a local virtual media image 310.
The stub 312 replaces the configuration of the bare metal
computing device 300, which indicates a locally initiated
boot process, to cause the bare metal computing device 300 to
indicate that it was booted from a network boot server 320
when in fact it was booted from a local virtual media image
310. Thereafter, a network boot program 316, or series of
network boot programs 316, 326, may be used to access a
remotely located mini control program (MCP) 322, such as an
operating system kernel or the like, and other bootstrap soft-
ware 324 using the network aware configuration of the bare
metal computing device 300. As a result, a network based
bootstrap operation may be performed for booting a bare
metal computing device 300.

For example, in one illustrative implementation, the firm-
ware 305 (e.g., UEF]) is configured to load the stub 312 from
the local virtual media image 310, which in turn reads its
configuration file 314 which was created and written to the
local virtual media image 310 by the management application
332. The virtual media image 310 further comprises a first
NBP 316, such as iPXE, which is loaded by the stub 312 into
memory 308. The stub 312 dynamically patches the first NBP
316, e.g., iPXE, to modify its internal sequence of commands,
or script, to comprise a series of commands for accessing the
network port and the remotely located boot server 320 to
download the MCP 322, the boot files 324, and/or the second
NBP 326 from the remotely located boot server 320. This
internal sequence of commands, or script, informs the first
NBP 316, e.g., iPXE, which network port to use (such as by
specification of a MAC address or the like), an IP address,
netmask, and optional gateway address for static I[P modes of
operation, or an indication of dynamic IP address mode if a
DHCP mode is to be used.

The command sequence of the first NBP 316, after patch-
ing by the stub 312, may further include an indication of one
or more subsequent NBPs, e.g., second NBP 326, to be used
and where and how to download the one or more subsequent

20

25

30

35

40

45

55

12

NBPs 326. For example, the second NBP 326 may be the
elilo.efi network boot program which is used to load the MCP
322 or other operating system from boot server 320. For
example, the stub 312 may configure the iPXE network boot
program to obtain the executable elilo.efi file via the network
340 using the address ftp://[FTP Server Address]/[elilo path],
such as fip://192.168.70.5/elilo.efi. Of course many varia-
tions are supported by the mechanisms of the illustrative
embodiments. For example, rather than using file transfer
protocol (ftp), other protocols including tftp or http may be
used. In addition a user identifier and password may be pro-
vided, such as ftp://userid:password@192.168.70.5/maint/
elilo-uldr.efi. The elilo.efi executable may then obtain its
configuration file, such as may be included in boot files 324,
from the same location it was loaded from. The configuration
file for elilo.efi, or more generally the second NBP 326, may
be generated and stored in the boot server 320 by the man-
agement application 332, for example, as part of an initial set
of out-of-band (OOB) operations for configuring the system
as a whole for network booting of bare metal computing
devices.

Thus, the stub 312 is configured by the configuration file to
configure the bare metal computing device 300 to utilize
network connections with the network 340 to connect to a
boot server 320 and to initiate a first NBP 316. In essence, the
stub 312 operates to replace the NBP’s loaded image control
(or configuration) data that indicates a local bootstrap opera-
tion, to have a simulated network environment using the
configuration file 314 associated with the stub 312. The stub
312 executes the first NBP 316 (e.g., iPXE) which commu-
nicates with the boot server 320 to download a second NBP
326 (e.g., elilo.efi) and execute it on the bare metal computing
device 300. The second NBP 326 downloads a mini control
program (MCP) 322 (operating system kernel, such as a
Linux kernel or the like) from the boot server 320. The MCP
322 executes on the bare metal computing device 300 to
download additional boot files 324 and execute operations on
the bare metal computing device 300 to configure the bare
metal computing device 300 for execution of an operating
system and applications. Once the MCP 322 completes its
initialization of the bare metal computing device 300, it sig-
nals that that the bare metal computing device 300 is ready for
applications to be executed on the bare metal computing
device 300 and the virtual media image 310 is then
unmounted. That is, the boot sequence associated with the
firmware 305 is modified to return to an original boot
sequence to enable local booting of the bare metal computing
device again and removing indications that the bare metal
computing device was booted from a remote boot server.

FIG. 4 is a flowchart outlining an example operation for
booting a bare metal computing device from a network boot
server in accordance with one illustrative embodiment. As
shown in FIG. 4, the operation starts with a number of pre-
liminary operations being performed so that configuration
data and virtual media images may be generated to allow
network based booting of a bare metal computing device in
accordance with the illustrative embodiments. While these
operations are shown in FIG. 4 as part of the overall operation,
these operations, i.e. operations 402-408 may be performed
separate from the remaining operations at a remote time from
the time the other operations 410-436 are performed. More-
over, these operations 402-408 may be performed by one or
more separate software programs and one or more separate
data processing devices, such as service processors, or the
like.

As shownin FIG. 4, as part of these preliminary operations,
which may be performed by the management application,

US 9,292,312 B2

13

such as management application 332 of management server
330, an out-of-band (OOB) determination of the boot server
to be utilized and the network ports to be utilized for booting
the bare metal computing device is performed, such as by a
service processor or the like generating OOB queries to one or
more computing devices with those computing devices
responding with the requested information, e.g., the network
port information and boot server address information (step
402). A boot list is stored in the bare metal computing device
(BMCD) that identifies the device from which to boot the bare
metal computing device, or an order of devices from which to
attempt to boot the bare metal computing device (step 404).
This boot list is the normal boot list that the bare metal
computing device would utilize absent the mechanisms of the
illustrative embodiments being implemented on the bare
metal computing device. The boot list is set to boot the bare
metal computing device from a virtual media image, e.g., a
floppy diskette image accessed via locally accessible memory
or storage device of the bare metal computing device, by a
management application 332, for example. This causes the
bare metal computing device to begin its bootstrap operation
using the stub, configuration information, and network boot
program stored in this virtual media image.

As another preliminary operation for setting up the system
for network booting of a bare metal computing device, the
management application may further create the virtual media
image for the bare metal computing device and populate it
with the stub and configuration information (step 406). The
bare metal computing device is further populated with a first
network boot program (NBP) which may be later configured
by the stub as described above (step 408). The first NBP may
be, for example, the iPXE boot program, and may be provided
as part of the virtual media image, for example. In addition,
although not explicitly shown in FIG. 4, the management
program may configure a second NBP on a remotely located
boot server for use with remote booting of bare metal com-
puting devices (BMCDs).

Having configured the BMCD for initial power up, the
BMCD is powered on causing the firmware, e.g., UEFIL, to
operate and initially start booting the BMCD from the virtual
media image local to the BMCD (step 410). The virtual media
image comprises a stub which is executed and which reads its
network configuration information from a corresponding
configuration file of the virtual media image (step 412). Based
on this network configuration information, e.g., MAC
address, port address, etc., the stub locates its local network
controller, e.g., NIC card (step 414). The stub saves the net-
work controller configuration information as a simulated net-
work boot environment data (step 416) and creates network
boot program (NBP) configuration data for the first NBP to
utilize in connecting to the network (step 418). The stub loads
the NBP from the virtual media image into memory (step 420)
and replaces the NBPs loaded image control data (or configu-
ration data), which indicates that the NBP was not loaded over
a network connection since it was loaded from a local media
(the local virtual media image), with the simulated network
boot environment data (step 422). For UEFI-based bare metal
computing devices, for example, the management of the
loaded image control data of the NBP includes modifying the
LoadedImage->DeviceHandle and [oadedImage->FilePath
values contained within UEFI data structures to values that
indicate network operation over the selected port. This in
effect tells the NBP that it was loaded over a network con-
nection when in fact it was not, thereby simulating the net-
work environment for the NBP to use.

The stub then invokes the NBP (step 424) which reads its
control data (configuration data), which is the simulated net-

5

10

15

20

25

30

40

45

50

55

60

65

14

work boot environment data, and the NBP proceeds with a
network bootstrap operation (step 426). Other NBPs may be
remotely located, downloaded, configured, and utilized to
assist in this network bootstrap operation, although this is
optional and not a requirement for proper operation of the
mechanisms of the illustrative embodiments (step 428). As
part of the network bootstrap operation, a mini control pro-
gram (MCP) is downloaded from a remote boot server (step
430) and executed on the BMCD (step 432). The execution of
the MCP, which may be an operating system kernel, such as a
Linux kernel or the like, for example, may involve the down-
loading of boot files from the boot server and execution of
these boot files. The MCP then completes its initialization of
the BMCD by executing these boot files and then signaling
that the BMCD is ready for execution of applications (step
434). The virtual media image is then unmounted and the
BMCD’s boot list in the firmware is restored to its original
state so that booting is performed from a local media (step
436). The operation then terminates.

Thus, the mechanisms of the illustrative embodiments
facilitate network based booting of a bare metal computing
device. The mechanisms of the illustrative embodiments ini-
tially begin the boot sequence locally using a virtual media
image and then simulates a network boot environment such
that network boot programs may be utilized to complete the
booting of the bare metal computing device from a remotely
located boot server. This avoids the problems associated with
network boot programs not being able to access a network
connection unless they themselves are loaded over that net-
work connection and the further problem associated with
attempting to utilize such mechanisms on a bare metal com-
puting device that does not necessarily have an operating
system or the like that would inform such a network boot
program of network hardware that is present in the bare metal
computing device.

As noted above, it should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one
example embodiment, the mechanisms of the illustrative
embodiments are implemented in software or program code,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-

US 9,292,312 B2

15

ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:
1. A method, in a bare metal computing device, for execut-
ing a network based boot operation for booting the bare metal
computing device, comprising:
in response to powering-on the bare metal computing
device, executing firmware, on the bare metal comput-
ing device, that executes a stub from a local media image
stored on the bare metal computing device, wherein
configuration information in a configuration file stored
on the bare metal computing device indicates that the
bare metal computing device is being booted from a
local medium associated with the bare metal computing
device;
configuring, by the stub, a network boot program stored on
the bare metal computing device to utilize a network
connection by modifying the configuration information
of the bare metal computing device to indicate that the
bare metal computing device is being booted from a
network device, wherein the network boot program is
already stored on the bare metal computing device at
powering-on the bare metal computing device;

obtaining, by the bare metal computing device, a control
program from a remotely located boot server using the
network boot program stored on the bare metal comput-
ing device; and

executing the control program on the bare metal computing

device to complete the booting of the bare metal com-
puting device.
2. The method of claim 1, wherein the stub dynamically
patches the network boot program to modify the network boot
program’s internal sequence of commands to comprise a
series of commands for accessing the network port specified
in the configuration information of the configuration file, and
for accessing the remotely located boot server to download
the control program.
3. The method of claim 1, wherein executing the control
program on the bare metal computing device to complete the
booting of the bare metal computing device comprises:
downloading, by the control program, a second network
boot program from the remotely located boot server; and

executing the second network boot program on the bare
metal computing device to download and execute one or
more additional boot files.

4. The method of claim 3, wherein the second network boot
program is an Extensible Firmware Interface Linux Loader
boot program.

5. The method of claim 1, wherein the configuration file
further specifies at least one of an Internet Protocol address,
netmask, and optional gateway address for a static Internet
Protocol address of the remotely located boot server, or an
indication to obtain a dynamic Internet Protocol address of
the remotely located boot server.

6. The method of claim 1, wherein the local media image
further comprises a configuration file for configuring the stub
with network configuration information including a network
port identifier over which the bare metal computing device
communicates with the remotely located boot server and a
network address of the remotely located boot server.

7. The method of claim 1, wherein configuring the network
boot program comprises configuring the network boot pro-
gram based on the configuration information in the configu-
ration file of the local media image.

15

20

30

35

40

45

50

55

16

8. The method of claim 1, wherein the network boot pro-
gram is a Preboot eXecution Environment boot program.

9. The method of claim 1, wherein the firmware is a Unified
Extensible Firmware Interface.

10. The method of claim 1, wherein the bare metal com-
puting device is a blade in a blade server, and wherein the
method is initiated and orchestrated by a management appli-
cation executing on a service processor associated with the
blade server.

11. A computer program product comprising a non-transi-
tory computer readable storage medium having a computer
readable program stored therein, wherein the computer read-
able program, when executed on a bare metal computing
device, causes the bare metal computing device to:

execute, in response to powering-on the bare metal com-

puting device, firmware that executes a stub from a local
media image stored on the bare metal computing device,
wherein configuration information in a configuration
file stored on the bare metal computing device indicates
that the bare metal computing device is being booted
from a local medium associated with the bare metal
computing device;

configure, by the stub, a network boot program stored on

the bare metal computing device to utilize a network
connection by modifying the configuration information
of the bare metal computing device to indicate that the
bare metal computing device is being booted from a
network device, wherein the network boot program is
already stored on the bare metal computing device at
powering-on the bare metal computing device;

obtain, by the bare metal computing device, a control pro-

gram from a remotely located boot server using the
network boot program stored on the bare metal comput-
ing device; and

execute the control program on the bare metal computing

device to complete the booting of the bare metal com-
puting device.
12. The computer program product of claim 11, wherein
the stub dynamically patches the network boot program to
modify the network boot program’s internal sequence of
commands to comprise a series of commands for accessing
the network port specified in the configuration information of
the configuration file, and for accessing the remotely located
boot server to download the control program.
13. The computer program product of claim 11, wherein
the computer readable program causes the bare metal com-
puting device to execute the control program on the bare
metal computing device to complete the booting of the bare
metal computing device by:
downloading, by the control program, a second network
boot program from the remotely located boot server; and

executing the second network boot program on the bare
metal computing device to download and execute one or
more additional boot files.

14. The computer program product of claim 13, wherein
the second network boot program is an Extensible Firmware
Interface Linux Loader boot program.

15. The computer program product of claim 11, wherein
the configuration file further specifies at least one of an Inter-
net Protocol address, netmask, and optional gateway address
for a static Internet Protocol address of the remotely located
boot server, or an indication to obtain a dynamic Internet
Protocol address of the remotely located boot server.

16. The computer program product of claim 11, wherein
the local media image further comprises a configuration file
for configuring the stub with network configuration informa-
tion including a network port identifier over which the bare

US 9,292,312 B2

17

metal computing device communicates with the remotely
located boot server and a network address of the remotely
located boot server.

17. The computer program product of claim 11, wherein
configuring the network boot program comprises configuring
the network boot program based on the configuration infor-
mation in the configuration file of the local media image.

18. The computer program product of claim 11, wherein
the network boot program is a Preboot eXecution Environ-
ment boot program.

19. The computer program product of claim 11, wherein
the firmware is a Unified Extensible Firmware Interface.

20. The computer program product of claim 11, wherein
the bare metal computing device is a blade in a blade server,
and wherein the method is initiated and orchestrated by a
management application executing on a service processor
associated with the blade server.

21. A bare metal computing device, comprising:

a processor;

memory coupled to the processor; and

anetwork controller coupled to the processor, wherein the

processor, in response to power-on of the bare metal
computing device:

executes firmware in the memory that executes a stub from

a virtual media image stored on the bare metal comput-
ing device, wherein configuration information in a con-
figuration file stored on the bare metal computing device
indicates that the bare metal computing device is being
booted from a local media;

configures, by the stub, a network boot program stored on

the bare metal computing device to utilize a network
connection of the network controller by modifying the
configuration information of the bare metal computing
device to indicate that the bare metal computing device
is being booted from a network device, wherein the
network boot program is already stored on the bare metal
computing device at powering-on the bare metal com-
puting device;

10

15

20

25

30

35

18

obtain a control program from a remotely located boot
server using the network boot program on the bare metal
computing device; and

execute the control program on the bare metal computing

device to complete the booting of the bare metal com-
puting device.
22. The bare metal computing device of claim 21, wherein
the stub dynamically patches the network boot program to
modify the network boot program’s internal sequence of
commands to comprise a series of commands for accessing
the network port specified in the configuration information of
the configuration file, and for accessing the remotely located
boot server to download the control program.
23. The bare metal computing device of claim 21, wherein
the bare metal computing device executes the control pro-
gram on the bare metal computing device to complete the
booting of the bare metal computing device by:
downloading, by the control program, a second network
boot program from the remotely located boot server; and

executing the second network boot program on the bare
metal computing device to download and execute one or
more additional boot files.

24. The bare metal computing device of claim 23, wherein
the network boot program is a Preboot eXecution Environ-
ment boot program, the firmware is a Unified Extensible
Firmware Interface, and the second network boot program is
an Extensible Firmware Interface Linux Loader boot pro-
gram.

25. The bare metal computing device of claim 21, wherein
the local media image further comprises a configuration file
for configuring the stub with network configuration informa-
tion including a network port identifier over which the bare
metal computing device communicates with the remotely
located boot server and a network address of the remotely
located boot server.

